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Abstract-The compatibility conditions of elasticity are given a bimetric formulation. based upon
a systematic use ofcovariant differentiation with respect to the reference configuration. Both three­
dimensional classical elasticity and Cosserat two-dimensional surfaces are considered.

1. INTRODUCTION

The purpose of this paper is to apply the bimetric formulae of differential geometry to
elasticity.

The bimetric standpoint was first introduced by Rosen (1980) in relativistic physics. It
represents the basis on which several alternative theories of gravitational field are founded,
but is not necessarily related to general relativistic universes only. We believe it may be
possible to apply a bimetric approach to some basic formulae of nonrelativistic continuum
theory.

Elaborating those questions we established, in particular, that the bimetric approach
is more direct and that it simplifies the procedure leading to the compatibility conditions.
Also, in the bimetric formUlation, the geometric picture of these conditions seems clearer
to us.

2. BIMETRIC RELAnONS

We shall give a briefaccount of the basic formulae characterizing the bimetric approach
to classical differential geometry.

If a three-dimensional metric, defined by the metric tensor g"p(X"), (P, p, v = 1,2,3),
is obtained by the deformation of another metric "I"p, expressed with respect to the same
coordinates X", the following relations hold (Rosen, 1980):

(1)

(2)

where

(3)

R~.p and p~".p are the Riemann-Christoffel tensors corresponding to the metrics g"p and
"I"p, respectively; K~.p reads:
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Ki. A i. A ,( + A ~ A ;. A ~ A i.
.J.lVfJ = Ll.,uplv -Ll..,uvlp il. JJp Ll. 7t\· -U.IJ.VU.Ttp· (4)

In the above and following formulae, a bar (I) denotes covariant derivatives with
respect to the undeformed metric Il'p, C denotes a partial derivative, whereas a semicolon
(;) denotes a covariant derivatives with respect to the deformed metric 91'p' Formulae (1)­
(4) can be directly verified. In accordance with the notation chosen one has

9I'p;,' = 0, Yl'p!I' = 0; 91'plv =1= 0, Il'p;v =1= O. (5)

3. DEFORMABLE BODIES: COMPATIBILITY CONDITIONS

In the classical mechanics of continua the undeformed (reference) configuration of a
body fJI, KO(XK

), K = 1,2,3, is the set of points of that body which occupy, at the initial
moment to, a domain V in E 3, bounded by a closed surface d. The position vector of a
particle is R(XK

), where X K are the material (Lagrangian) coordinates, K = 1,2,3. The
deformed configuration K(XK, t) is the set of points ofa body fJI which occupy, at a moment
t, a domain v in E 3 , bounded by a closed surface a. The position vector ofa particle in that
configuration is r(xk), where xk are the spatial (Eulerian) coordinates, k = 1,2,3.

The square of a line element in the undeformed and deformed configurations are,
respectively,

(6)

(7)

where GKL is the metric tensor in Ko and CKL is the Green deformation tensor, which can
be interpreted as the metric tensor of the deformed configuration if one considers X K as
convective coordinates. The tensor Ukl is the fundamental metric tensor of the deformed
configuration K and Ckl is the Cauchy deformation tensor.

It is convenient to take, instead of CKL and Ckl, the strain measures EKL and Ckl, where

(8)

Considering the undeformed configuration Ko as an undeformed metric with the
fundamental tensor GKL and the deformed configuration as a deformed metric with the
fundamental tensor CKL , there results from (5) :

(I) and (2) now read

{K} K KLM = rLM+~.LM

where we have correspondingly for (3) :

(9)

(10)

(II)

(12)
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R~"',"R and P~..,.vR are the Riemann-Christoffel tensors of the metrics CKL and GKL , respec­
tively, and

Further, by (I), one has from (9)2 :

C C AS +C AS C KL C SLAK C KSAL
KLIM = SLU,KM KSU.LM' 1M = - U,SM - U,MS'

and

By (l2h it is easy to see that (13) can be expressed in the following form

(13)

(14)

(15)

K
L
MNR = !CLT(CTRIMN +CMNITR - CRMIITN - CTNIRM)

+ 1CLT(CSTP~MNR + CMSP~TRN) + CLSCQT(.1TRS.1~N-.1TNS.1~R)' (16)

The above formula has been simplified by using the Ricci identity.
From the geometrical standpoint the compatibility conditions in the mechanics of

deformable continua are connected with the metric properties of the tensor CKL • For a
compatible deformation, the Riemann-ehristoffel tensor corresponding to the tensor CKL

is equal to zero, Le. C KL is the metric tensor of E 3• As P~MNR is be definition null, the
compatibility conditions can, by (II), be written in the form

(17)

which can explicitly be expressed by (8), (9), and (16); that is,

ETRIMN +EMNITR - ERMITN - ETNIRM

+CSQ[(ESRIT+ETSIR-ERllS)(EQMIN+ENQIM-EMNIQ)

- (ESN1T + E TSIN - ENllS)(EQMIR +E RQ1M - E RMIQ )] = O. (18)

This form is identical to the well-known form of the compatibility conditions for finite
deformation.

In the case of infinitesimal deformations the above relations become

(19)

It is easy to show that one may obtain, by the use ofbimetric formulae, the compatibility
conditions expressed through the Cauchy deformation tensor Ckl, or the corresponding
strain measure Ckl'

Application of bimetric formulae allows one to obtain the compatibility conditions of
the generalized Cosserat continuum, using an appropriate expression for the line element.
In this case the compatibility conditions are of the form

K~MNR = 0, L,M,N,R = 1,2, ... ,6, (20)

which is of the same form as in Eringen (1969).
We point out that formula (20) has been obtained only as a bimetric expression of

Eringen's results. Work on Cosserat's surfaces in the next section will be based on only the
general formulae of Section 2; this being the consequence of the fact that the differential
geometry of surfaces in Cosserat's theory is essentially intrinsic.
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4. COSSERAT SURFACES. COMPATIBILITY CONDITIONS

A Cosserat surface is a two-dimensional material surface in £3, with a single deformable
director assigned to every point of the surface.

At the initial moment to, the Cosserat surface CI is in its undeformed, reference
configuration. We denote this reference surface by II', its position vector with respect to a
fixed origin by R(OP), (rJ.,P = 1,2), the assigned director by D(OP), the base vectors by
A.(OP), the unit normal to II' by Ap(OP) ; OfJ being the convective coordinates.

At the moment t, the surface CI is in a deformed configuration. Let us denote that
surface by s, it position vector by r(Op, 0, the assigned director by d(OP, t), the base vectors
by a, (OP, 0, and the unit normal to s by afJ(OfJ, t).

Tensors A,p and a,fJ are the first metric tensor of the surface II' and s, and tensors B,fJ
and b'fJ the second, and so (Naghdi, 1972),

A,p = A,' Ap,

or
IX. = o(J' , a. ' 1X 3 = O. (21)

The directors D and d and the gradient directors D., and d.• can be expressed in the form
(Green et al., 1965),

D= D,A'+D3A 3
, d= d,a'+d3a 3, (D., = ;~)

D., = Ap,A'+A3.A
3, d.• = A.p,a'+A.3.a3, (d.• = ::)

where A' and 8' are reciprocal basic vectors and A3 = A3, 83 = a 3. Further,

(22)

The quantities A,p, A,p, A3.. D. and D 3, respectively a.p, A.,p, A.3.. d, and d3 , are
the kinematical strain measures which completely determine the Cosserat surface in the
undeformed, respectively in the deformed, configuration (Green et al., 1965). One may use,
instead, more suitable strain measures of the form

c,p = !(a,p - A.p), ".p = A..fJ - A.p, 1'. = d. - D.

"3. = ,1.3. - A 3.. 1'3 = d3- D3· (25)

Let us remark that the quantity fI.p, defined by

(26)

can be equivalently introduced when considering deformations. These strain measures are
not independent of measures (25), namely, from (24) 1.3, (25h,3.S and (26), we obtain

(27)

where we have, with respect to (I), made use of the relation
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whereas one obtains from (24h,4' (25)3.4.5 and (26),
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(28)

(29)

If we consider the undeformed configuration of~ as an undeformed metric space and
its deformed configuration as a deformed metric space, there results by (5)

(30)

one has by (I)

{
7t } = 1 ltr (oarv oal'r _ oal'v)

Jl.V 2
a 001' + oOv oor'

r lt = 1Alt' (OAn oAI" _ OAl'v)
I'V 2 o(}l' + oOv off'

(31)

and (31h can, by (25) 1 and (30h, be expressed in the form

(32)

The relations between the covariant derivatives of the second-order tensors read, by (1)
and (31), for the deformed an undeformed metrics, respectively,

ta/l;7 = ta/l l7 - t1l/l~~«7 - ta"~~/l7

t~/I = ta/l + t"/I~a + t a1l~/I.7 17 ."7 .....,

(33)

The compatibility conditions for deformations in the Cosserat theory are the conditions
of integrability of the partial differential equations

which can be expressed in the form

Pa/l76 = B"",Bf16 - BadB/I7, BVal/l = Bv/l1a ,

Aval/l+BvaA3/1 = Av/l12+Bv/lA3a,

A3al/l+BpAva = A 3/1la+ B : Av/l,

on the undeformed surface [iJ, and in the form

Ra/l76 = b"",b/l6 -bad b/l7, bva;/I = bv/l;a,

A.va;/I +bvaA.J/I = A.v/l;2 +bv/lA.3a,

A.3a;/I + BPA..,a = A.J/I;2 + B:Ay/l,

(34)

(35)

(36)
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on the deformed surface s. P2[J;'6 and R2[J;'6 are the Riemann-Christoffel tensors of g and s,
respectively. The first two eqns in (35) and (36) are the well-known Gauss and Codazzi
equations. It is clear, by (24), that (35) and (36) may be expressed in another form.
Meanwhile. if applying the bimetric relations to the compatibility conditions of Cosserat
surfaces through the deformation measures (25). we can retain the form of (35) and (36)
for these conditions.

The first of eqns (36), expressed in terms of the strain measures (25) I and (26), will
read, by the bimetric relation (2),

(37)

where

(38)

We obtained (38) from (4), by the use of (30) I, (31) J. (33) 3 and the following relation:

(39)

There results from (32), (35)" (36) I, (37) and (38), by (25h (26) and (30) 2

e
2
[Je

6
;'[e2JI[J;' + B/1;·('726 - B~ei.2)] +e

JY
'726'7P;'

+e6YaPI'(epJI2+e2P,J-e26IP)(el';'IP+epl'l;.-ep:l') = 0 (40)

where e"" is the Ricci skew-symmetric tensor.
By (25L, (26), (31h and (35h respectively (32), we transform (36)2 into the form

(41)

By (25)..2.4, (26), (31 hand (35h, respectively (32), we transform (36) J into the form

Finally, (36)4 is, by (25h4' (26) and (35)4' transformed into the form

(43)

where we have made use of

(44)

which results from the application of (1) in "311.;P'

Relations (40)-(43) represent compatibility conditions for the deformation of the
Cosserat surface. They have been obtained from the general integrability conditions (34),
and by the use of bimetric relations (1) and (2).

It is easy to obtain from (40)-(43) the compatibility conditions for deformation in
some special cases, like for instance, the restricted theory (Naghdi, 1972), or the case of a
flat undeformed configuration. For some special positions of the initial director these
relations are simplified.

In the restricted theory, i.e. in the theory in which the director is not admitted, the
deformation is determined only by strain measures e2 /1 and '72/1' and we have
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Equations (40) and (41) retain their form, eqn (42) reduces to (41), and (43) is identically
satisfied.

If the undeformed space is flat there follows B,{J = 0, so that by (40)-(43) one obtains
the corresponding compatibility conditions. Also, if one chooses D == A) one has

(46)

so that eqns (40)-(43) take a simpler form.

5. INFINITESIMAL DEFORMATIONS. COMPATIBILITY CONDITIONS FOR SHELLS AND
PLATES

The results of the linear theory of Cosserat surfaces provide the basis of a linear
kinematical theory of shells and plates by a direct approach. As a consequence, the com­
patibility conditions (40)-(43) for infinitesimal deformations hold for the deformations in
the linear theory of shells and plates.

Assuming the deformations infinitesimal, we have, first, for the contravariant metric
tensor of the deformed space,

(47)

Neglecting in (40)-(43) terms of higher order, we obtain the compatibility conditions of
the Cosserat surface in the case of infinitesimal deformations, respectively the compatibility
conditions of the linear theory of shells and plates in the direct approach, of the form

(48)

(49)

(50)

(51)

Finally, we shall compare eqns (48)-(51) with the corresponding equations quoted in
Naghdi (1972), which represent the compatibility conditions of the linear theory of shells
and plates in the case D == A). By (25) and (46), expressions (27) and (29) reduce to

(52)

(53)

whereas there results, from (48) using (52),

(54)

'1a.<l being symmetric, one obtains by (52)

(55)

Then (54) reduces to

(56)

Further, (49) can be written in the equivalent form
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wherefrom. by (52).
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(57)

~2/J["V;'(.' + Bn" ., + B" )+ ,.,·nB;·" 1- 0
(~ G ''-\'2:/J z"-rrTi/J-/vl:t./J \'7./3/J (# r(...rr-x.'j/ - •

According to (52). (53) and (49). one obtains from (50)

and from (51), by (52) and (53).

(58)

(59)

(60)

Equations (56), (58), (59) and (60) have the same form as the corresponding relations
in Naghdi (1972). which have been obtained as the necessary and sufficient conditions for
the existence of single-valued fields of displacements and director displacements in the case
of infinitesimal deformations.
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